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ABSTRACT: The Hansen solubility parameters (HSPs) are useful for predicting solvent–solute affinity. In this study, the HSPs and the

sphere radii (Ro’s) of poly(ether sulfone), bitumen, and lignin were determined by a novel optimization method. A hybrid algorithm,

which could locate multiple optima, was developed and used to solve optimization problems for maximizing the fitness (F) and min-

imizing both Ro and the numbers of good solvent and total outliers. For most selected samples, improved results with higher F and

reduced Ro and number of outliers were obtained. The results clarify the correlations among three criteria for an optimal solubility

sphere, namely, the smallest Ro, highest F, and lowest number of outliers. They can be satisfied simultaneously only when outliers are

avoided; otherwise, a reduction in Ro decreases F but can retain the same outliers. Thereby, defining the solubility sphere as the

one having the smallest Ro and the lowest number of outliers is more reasonable according to the physical significance in both cases.
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INTRODUCTION

Hansen Solubility Parameters (HSPs)

The solubility parameter (SP) is of practical significance in

material design and processing. It has been applied to predict

the polymer compatibility, chemical resistance, and permeation

rate and to characterize the surface properties of pigments, fill-

ers, and fibers.1

SP was first defined by Hildebrand as the square root of the

cohesive energy density2:
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where E is the measured latent heat of vaporization of the pure

solvent and V is its molar volume.

The Hildebrand SP is limited to regular solutions or nonpolar sys-

tems exclusively involving van der Waals interactions. For systems

containing polar molecules or specific interactions, the use

of multicomponent SPs, such as three-dimensional HSPs, is

required.1,3 The Hansen dispersion, polar, and hydrogen-bonding

solubility parameters (dd, dp, and dh, respectively) are defined as

follows4:
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where Ed, Ep, and Eh are the cohesive energy components

induced by dispersion, polar, and hydrogen-bonding interac-

tions, respectively. This is based on the assumption that

E 5 Ed 1 Ep 1 Eh.

The sum of the squares of three HSPs is equal to the square of

the Hildebrand SP:

d25d2
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p1d2
h (3)

In Hansen’s system, the solubility of a solvent is represented by

a point in the dd 3 dp 3 dh space, whereas the solubility of a

solute is represented by a volume. In principle, the solubility

volume includes all good solvents and excludes all bad ones. A

good or bad solvent refers to a solvent whose solute affinity is

higher or lower, respectively, than a critical level. In terms of a

large number of experimental data and HSP evaluations, Han-

sen found that in a modified 2dd 3 dp 3 dh space (Figure 1), the

solubility volume could be simplified into a sphere identified by

four parameters: the coordinate of the sphere center (2dd2, dp2,

dh2) and the sphere radius (Ro), where dd2, dp2, and dh2 are the

respective HSPs of the solute.1,3,4 In the modified space, the
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strength of a specific solvent–solute interaction is reflected by

two parameters: the distance in HSPs (Ra) and the relative

energy difference (RED) between the two substances:
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where dd1, dp1, and dh1 are the respective HSPs of the solvent.

An RED of less than 1 suggests a high solvent–solute affinity, an

RED of greater than 1 suggests a low affinity, and an RED of 1

suggests the boundary condition.

The solubility sphere in the 2dd 3 dp 3 dh space is by far the

most widely used model because of its simple formulas, easy

illustration, and abundant reported data. Therefore, it was

considered in this study.

Analysis of the Current Optimization Methods for

Determining the HSPs

One can effectively determine the solubility sphere of a solute by

measuring the solubility, swelling, surface attack, and so on of

the solute in a series of solvents with known and diverse HSPs

and then fitting the solubility sphere to the experimental data by

solving optimization problems for independent variable vector

x 5 (dd, dp, dh, Ro), where dd, Ro> 0 and dp, dh � 0.5

In these methods, various optimization problems and solution

algorithms have been involved.1,3,6–8 All of the algorithms have one

thing in common: The fitness (F) of an estimate to the experimen-

tal data is evaluated by a data-fit function, which takes the form

FðxÞ5
�YN
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where N is the number of solvents and the term fi(x) is calcu-

lated by

fiðxÞ5
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where Rai and ai are the distance and indicator of the interaction

strength between the solute and the ith solvent, respectively. An

ai of 1 denotes a good solvent, and an ai of 0 denotes a bad one.

All of the methods can be divided into two types with respect to their

optimization objectives. The first type maximizes F. The study from

Gharagheizi6 belongs to this type. He used a Nelder–Mead simplex

search method to solve the problem of minj1 2 F(x)j. The second

type maximizes F and minimizes Ro. For instance, Hansen1,3 developed

an algorithm that evaluates the F values of eight vertexes of a cube with

variant Ro and compares them with that of the current best position,

namely, the cubic center. If a higher F is found, the center is replaced

with the new best position. The refinement of the cubic size is used to

ensure accuracy. Recently, Ma and Zhou7 used a goal attainment algo-

rithm to solve the multiobjective optimization problem with respect to

min 1-F(x) and min Ro, whereas Vebber et al.8 used a genetic algorithm

to solve the problem of max F(x)Ro21/m, where Ro21/m (m� 20) is a

size factor. As compared with the classical Hansen’s method, the other

methods improved the results in at least one of the aspects: a smaller

Ro, a higher F, and fewer outliers.6–8 An outlier is a good solvent that

falls outside the sphere or a bad solvent that falls inside the sphere. The

numbers of total, good solvent, and bad solvent outliers are denoted as

nt, ng, and nb, respectively, where nt 5 ng 1 nb.

Three criteria for an optimal solubility sphere, which have been

mentioned by Hansen1,9 and other authors,6–8 were the smallest

Ro, highest F, and lowest number of outliers. To date, consis-

tency among the three criteria, which is a prerequisite for

simultaneous satisfaction of all of the criteria, has not been

investigated; moreover, the lowest number of outliers as a qual-

ity criterion for an estimate has been mentioned in the studies

of Hansen9 and Vebber et al.8 but has not yet been directly con-

sidered as an optimization objective like the other two criteria.

DESCRIPTION OF THE NOVEL OPTIMIZATION
METHOD FOR DETERMINING HSPS

In this section, a novel optimization method is proposed to

determine the HSPs and Ro of a solute. It differs from the cur-

rent methods in both the objective function and solution algo-

rithm, as elaborated later.

Because no theoretical proof is available on the uniqueness of the

global optimum and recording local optima is desired in the new

method, a hybrid global–local search algorithm with the capability

of locating multiple global or global–local optima during the opti-

mization process was developed. In this algorithm, the global

search is performed until a solution is found whose objective func-

tion value is below a threshold, and then, a local search is made in

the neighborhood of the solution. The resulting local optimum is

recorded. After a predefined number of solutions have been found,

the global optimum (optima) is determined from the records.

A restartable particle swarm optimization method10 based on

that proposed by Eberhart and Kennedy11 was used for global

Figure 1. Hansen’s solubility system in the modified 2dd 3 dp 3 dh space.
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search. The particle swarm optimization method is a stochastic

method that solves problems by mimicking the behavior of bird

flocking. It starts with a group of particles located randomly in

a hyperspace (the position of each particle is a potential solu-

tion) and searches for the optimum by updating the position

and velocity of each particle according to the best position that

the particle has achieved so far and that among the overall pop-

ulation. The best position is the one having the best objective

function value. A restartable particle swarm optimization

method has global convergence. The simplex search method

proposed by Nelder and Mead12 was used for the local search.

The Nelder–Mead method is a direct search method which deals

with a simplex having D 1 1 vertexes in a D-dimensional space,

where the position of each vertex is a potential solution. It

searches for an optimum by rescaling the simplex with four

procedures: reflection, expansion, contraction, and shrinkage. It

converges quickly but readily toward a local optimum. The

combination of local search with a global search tends to pre-

vent the algorithm from being trapped in a local optimum. The

pseudo code of the hybrid optimization algorithm for solving

constrained minimization problems is given in the Appendix.

Two optimization problems are considered here. The first prob-

lem (problem I) aims to find the optimal sphere having the

highest F. It is expressed by

min12FðxÞ (7a)

The objective functions are defined as follows:

gGðxÞ5gLðxÞ512FðxÞ (7b)

where gG and gL are the functions used for the global and local

searches, respectively.

This problem is the same as that being considered in ref. 6 but

will be applied to more solutes in addition to the one con-

cerned therein. The results of this problem are used to check

the global convergence and accuracy of the hybrid algorithm.

The second problem (problem II) aims to find the smallest sphere

encompassing the maximum number of good solvents and having

the lowest nt. One fulfills this by locating the local optima for all

possible outlier sets (nt, ng, nb) and then figuring out the results

for the sets having the lowest ng and, subsequently, the result

(results) for the set (sets) having the lowest nt. The optimization

problem is represented by

minRo s:t: minng ;minnt (8a)

where ng and nt are both considered to ensure the uniqueness of

the resulting outlier set (nt, ng, nb) and optimal solubility sphere.

The inclusion of ng is necessary because the exclusion of all good

solvents and their effects may happen when the number of bad

solvents is larger than n. min ng is arbitrarily chosen, which is

similar but not equivalent to the consideration in Hansen’s

SPHERE1 program.1

The objective functions are defined as follows:

gGðxÞ512FðxÞ; gLðxÞ5Ro1ng 1nt (8b)

This is the new optimization problem designed by concerning the

number of outliers instead of F in the objective function. The rea-

sons are as follows. According to eq. (6a), F is a function of Ro

when at least one outlier is involved. In this case, a sphere having

the smallest Ro and the highest F exists if and only if the smallest

sphere is exactly the one giving the highest F. However, this con-

dition was hardly met, as indicated by the results of this study. By

contrast, one must be able to find a sphere encompassing the

maximum number of good solvents and having the lowest nt and

then minimize the sphere while retaining the same outliers.

The results of both problems were used to check the correctness of

the new optimization problem defined by eqs. (8a) and (8b), or, eq.

(8) and the consistencies among the three criteria for an optimal sol-

ubility sphere under circumstances where outliers do or do not exist.

In both problems, the data-fit function was used for global

search. The reasons were twofold. First, the data-fit function is

a continuous function and converges more quickly than discrete

functions such as eq. (8b). Second, with an F threshold before,

the local search could filter out solutions having a large number

of outliers because a relatively high F corresponded to a rela-

tively small number of outliers, as shown by the reported

results. Both helped to improve the computational efficiency.

COMPUTER SIMULATIONS

The simulations started from the average HSPs of good solvents

and half of the average distance between all of the good solvent

pairs. They were carried out with the following parameters. For

the particle swarm global search, the inertial weight was 0.729,

and the position and velocity update coefficients were both

1.494. For the Nelder–Mead local search, the step length in gen-

erating a simplex was 0.1, and the reflection, expansion, con-

traction, and shrinking coefficients were 1, 2, 0.5, and 0.5,

respectively. The F threshold was below unity and was selected

on the basis of prior tests. A total number of 2 3 104 solutions

were recorded for each simulation.

The input data of the simulations were the HSPs of the solvents

(ddi, dpi, and dhi) and the solvent–solute interaction factors (ai,

where i 5 1, 2, . . ., N). The experimental data of ai were taken

from the literature. The output data were the HSPs and Ro val-

ues of the solute and the corresponding F, nt, ng, nb, and RED

values of each solvent–solute pair.

RESULTS AND DISCUSSION

Case 1: All Good Solvents Lie Inside and All Bad Solvents

Lie Outside the Solubility Sphere

With poly(ether sulfone) used as an illustration, HSPs and Ro

values of poly(ether sulfone) obtained herein and reported in

the literature are listed in Table I. For both problem I and prob-

lem II, the highest F reached unity, and simultaneously, the low-

est number of outliers was reduced to zero. This was the same

as the best results6–8 given in Table I and thereby verified the

validity and global convergence of the hybrid algorithm.

From problem I, many optima (infinite optima in a continuous

space) were found, so a range of each variable is given in Table

I. Table I also shows that a single optimum was derived from

the same optimization problem with the Nelder–Mead simplex

search method6, and all of the reported HSPs and Ro’s6–8,13

were within the ranges obtained here. Both revealed the global

search ability of the hybrid algorithm.
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The global optimum for problem II was found to be the same

as the specific solution for problem I having the smallest Ro.

This validated the correctness of the optimization problem

defined by eq. (7a). The resulting HSPs for PES were as follows:

dd 5 18.810 MPa1/2, dp 5 11.245 MPa1/2, and dh 5 7.854 MPa1/2.

The Ro of 5.387 MPa1/2 was lower than all of the data6–8,13

reported elsewhere.

The results from both problems show that in the case under

consideration, a sphere having the highest F must be the one

having the lowest ng and nt; the correspondence was not

affected by the minimization of Ro as long as outliers were

avoided. This could be explained by eqs. (6a) and (6b), or, eq.

(6), where F is 1 if and only if nt 5 ng 5 nb 5 0, and F is inde-

pendent of Ro when nt 5 ng 5 nb 5 0. Herein, defining the solu-

bility sphere as the one having the smallest Ro and highest F is

exactly the same as defining it as the one having the smallest Ro

and lowest ng and nt. An optimal solubility sphere could be

determined that simultaneously satisfied the three criteria men-

tioned by Hansen9 and Vebber et al.8

The RED values for each poly(ether sulfone)–solvent pair, both

calculated from the global optimum for problem II and reported

in literature, are listed in Table I-SI (Supporting Information).

Case 2: At Least One Good Solvent Falls Outside or

One Bad Solvent Falls Inside the Solubility Sphere

Here, we use bitumen 1, bitumen 2, and lignin as illustrations.

The optimal HSPs and Ro values of the three materials obtained

herein and reported in the literature are listed in Table II. The

HSPs and Ro values having the smallest Ro for various (nt, ng,

nb) sets obtained from problem II are listed in Table III. For

both problem I and problem II, the highest F was below 1, and

at least one outlier existed.

From problem I, the highest F values obtained for bitumen 1,

bitumen 2, and lignin were 0.980, 0.980, and 0.991, respectively;

these were the highest values among all of the reported

data8,9,14,15 in Table II. As compared with the results in ref. 8,

the improvements in F were less than 1023 for the two bitu-

mens but up to 0.001 for lignin. This again validated the global

convergence and accuracy of the hybrid algorithm. Table III also

shows that the optimal sphere having the highest F may not

have had the lowest number of outliers.

From problem II, except for the Ro of bitumen 1, all of the Ro

values and numbers of outliers obtained for the three materials

were the lowest compared with the other reported data8,9,14,15

in Table II. The nt values for bitumen 1, bitumen 2, and lignin

were reduced to 1, 2, and 1, respectively; these values were

remarkably less than the 3, 6, and 3 values determined from the

classical method. The only exception was that the Ro for bitu-

men 1 (5.881 MPa1/2) was larger than the value of 5.76 MPa1/2

given in ref. 14. This was because the two spheres had different

numbers of outliers. As shown in Table III, the smallest Ro’s dif-

fered from each other for different (nt, ng, nb) sets. For the

same number of outliers, however, the reported Ro values could

be further reduced for all three materials. In particular, for

Table I. Calculated and Reported HSPs and Ro Values for Poly(ether sulfone)

Problem dd (MPa1/2) dp (MPa1/2) dh (MPa1/2) Ro (MPa1/2) nt ng nb F Reference

I 18.810–20.106 10.624–11.352 7.854–9.585 5.387–6.736 0 0 0 1 This study

II 18.810 11.245 7.854 5.387 0 0 0 1 This study

— 19.6 10.8 9.2 6.2 1 0 1 0.999 13

— 20.0902 10.6302 9.5715 6.7162 0 0 0 1 6

— 18.8 11.2 7.9 5.4 0 0 0 1 7

— 18.84 11.22 7.95 5.42 0 0 0 1 8

Table II. Calculated and Reported HSPs and Ro Values for Bitumen 1, Bitumen 2, and Lignin

Material Problem dd (MPa1/2) dp (MPa1/2) dh (MPa1/2) Ro (MPa1/2) nt ng nb F Reference

Bitumen 1 I 18.712 4.608 3.404 6.078 2 1 1 0.989 This study

II 18.616 4.728 3.478 5.881 1 0 1 0.989 This study

— 18.4 3.9 3.6 5.76 3 1 2 0.980 14

— 18.66 4.79 3.45 5.94 2 1 1 0.989 8

Bitumen 2 I 18.342 3.954 3.443 5.745 4 2 2 0.980 This study

II 18.323 4.008 3.492 5.700 2 0 2 0.980 This study

— 18.6 3.0 3.4 6.3 6 3 3 0.977 9

— 18.33 3.99 3.49 5.71 3 1 2 0.980 8

Lignin I 21.917 14.303 16.859 13.826 3 2 1 0.991 This study

II 21.553 13.852 16.932 13.164 1 0 1 0.989 This study

— 21.9 14.1 16.9 13.7 3 2 1 0.990 15

— 21.71 14.18 16.93 13.45 2 1 1 0.990 8
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lignin, the Ro’s could be reduced from 13.7 MPa1/2 15 and 13.45

MPa1/2 8 to 9.48 and 9.94 MPa1/2 for (nt, ng, nb) 5 (3, 2, 1) and

(2, 1, 1), respectively. This suggested that there was a larger

space to accommodate a sphere containing the same number of

outliers for lignin than for the two bitumens. Table II also

shows that the F values obtained from problem II were compa-

rable with the data reported elsewhere. For each material, the

highest F was obtained for the solution having the lowest num-

ber of outliers (Table III).

In a comparison of the data in Tables II and III, two things are

noticeable:

1. The sphere having the highest F may not have the lowest nt.

This can be explained by eqs. (6a) and (6b), or eq. (6).

When at least one outlier exists, F is a function of Ro, and

the highest F is reached if and only if the total distance

from each outlier to the solubility sphere surface decreases

to the minimum but not necessarily when the number of

outliers decreases to the lowest value.

2. All of the F values obtained from problem II and refs.

8,9,14, and 15 were lower than those obtained from problem

I; this suggested that a reduction in Ro generally decreases F

and may change ng and nt. This can also be explained by

eqs. (6a) and (6b), or eq. (6). As long as the smallest sphere

is not the optimal one that gives the highest F, any change

in Ro moves the sphere surface away from its optimal posi-

tion and, hence, increases the total distance between each

outlier and the sphere surface, reduces F, and may simulta-

neously alter nt.

To summarize, in the case under consideration, there was not

such a sphere that simultaneously had the smallest Ro and high-

est F, whereas a smallest sphere did exist that had the lowest ng

and nt. Herein, defining a solubility sphere as the one having

the smallest Ro and lowest ng and nt rather than the one having

the smallest Ro and highest F is more reasonable according to

its physical significance.

The RED values for each solvent–solute pair for bitumen 1,

bitumen 2, and lignin are listed in Tables II-SI, III-SI, and IV-SI

(Supporting Information), respectively.

CONCLUSIONS

A novel optimization method was presented for determining

the ds and Ro’s of poly(ether sulfone), bitumen, and lignin. A

hybrid algorithm featured with the capability of locating multi-

ple optimal solutions was developed and was used to solve two

optimization problems: the first maximized F, and the second

minimized both Ro and ng and nt. The latter was the new opti-

mization problem proposed concerning the number of outliers

instead of F in the objective function.

The global convergence and accuracy of the hybrid algorithm

were validated by the results obtained from the first problem

for their improved Fs. With the new optimization objective

function and hybrid algorithm, the greatest numbers of outliers

Table III. HSPs and Ro Values of Bitumen 1, Bitumen 2, and Lignin at Various (nt, ng, nb) Sets Calculated from Problem II

Material dd (MPa1/2) dp (MPa1/2) dh (MPa1/2) Ro (MPa1/2) nt ng nb F

Bitumen 1 18.616 4.728 3.478 5.881 1 0 1 0.989

18.457 4.033 2.670 5.740 1 1 0 0.984

18.328 4.023 3.491 5.700 2 0 2 0.980

18.471 3.939 3.895 5.579 2 1 1 0.981

18.399 4.645 2.498 5.335 2 2 0 0.959

18.316 4.027 3.582 5.704 3 0 3 0.977

18.405 4.042 3.756 5.574 3 1 2 0.981

18.528 4.142 4.234 5.344 3 2 1 0.964

18.337 5.076 2.615 5.068 3 3 0 0.932

Bitumen 2 18.323 4.008 3.492 5.700 2 0 2 0.980

18.322 4.029 3.544 5.702 3 0 3 0.979

18.340 3.974 3.825 5.592 3 1 2 0.976

18.462 3.842 3.955 5.555 3 2 1 0.976

18.614 3.945 3.715 5.431 3 3 0 0.960

Lignin 21.553 13.852 16.932 13.164 1 0 1 0.989

21.505 13.648 16.935 13.053 2 0 2 0.988

19.693 12.925 14.792 9.943 2 1 1 0.955

20.500 12.133 15.151 10.281 2 2 0 0.961

20.674 14.223 16.511 12.427 3 0 3 0.971

19.675 12.702 14.807 9.817 3 1 2 0.954

19.598 12.429 14.574 9.478 3 2 1 0.948

20.025 11.791 15.213 9.468 3 3 0 0.954
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and Ro’s of the three materials were reduced, and the F values

were comparable to data reported in the literature.

The results obtained in this study clarify the consistencies and

correlations among the three criteria for an optimal solubility

sphere, namely, the smallest Ro, highest F, and lowest number

of outliers. Only when outliers are avoided can the three criteria

be satisfied simultaneously. When outliers are inevitable, how-

ever, a reduction in Ro generally decreases F, but the same num-

ber of outliers may be retained. As a result, defining a solubility

sphere as the smallest sphere encompassing the maximum num-

ber of good solvents and having the lowest nt rather than the

one having the smallest Ro and highest F is more general and

reasonable according to the physical significance when both

cases are concerned.
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APPENDIX

The pseudo code of the hybrid global–local search optimization

algorithm for solving constrained minimization problems is

given next. Let xi and vi be the position and velocity of the ith

paticle; xInfLim and xSupLim are inferior and supreme limits for

xi, vInfLim and vSupLim are those for vi. Then xi and vi are in the

ranges of [xInfLim, xSupLim] an [vInfLim, vSupLim], respectively,

where i51,2,. . .,M.

Step 1. Initialize M particles by randomly generating particle

positions xi and velocities vi.

Step 2. Evaluate the functional values of each xi [gG(xt
i )],

update the best position each particle has achieved (yt
i ),

yt
i 5

yt21
i

xt
i

(
and

gGðxt
i Þ � gGðyt21

i Þ

gGðxt
i Þ < gGðyt21

i Þ
, and determine the best

position among the overall particle population (yt),

ŷ t 5arg minyi
fgGðyt

i Þg.
Step 3. If the gG value of yt gGðŷ t Þ is lower than a predefined

critical functional value (g�G), isolate the particle, and go to step

4. Otherwise, go to step 5.

Step 4. Generate a simplex whose five vertexes are located at xt
i

and xt
i 1 ej dxj (where j 5 1, 2, 3, or 4), respectively, where ej is

the jth row of a 5 3 5 identity matrix and dxj is the length step

in the jth dimension. Perform a Nelder–Mead local search with

an objective function gL. If local optimum is found, record it,

randomly initialize the position and velocity of the global best

particle, update yt
i and ŷ t , and go to step 5.

Step 5. If maximum record or iteration number is met, stop.

Otherwise, if the particle swarm algorithm converges, restart it,

and go to step 1. Otherwise, go to step 6.

Step 6. Update the velocities and positions of M particles with

the following equations and go to step 2:

vt11
i 5wvt

i 1c1rt
1ðŷ t

i 2xt
i Þ1c2rt

2ðyt
i 2xt

i Þ

xt11
i 5xt

i 1vt11
i

where w is the inertial weight, c1 and c2 are the positive con-

stants used for accelerating the particle position and velocity,

respectively; and r1 and r2 are vectors composed of random

numbers in the range [0,1].
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